
A Numerical Method for Locating the Zeros 
of an Analytic Function* 

By L. M. Delvest and J. N. Lynesst 

1. Introduction. In this paper we study the following problem: How can we lo- 
cate all the zeros of a given analytic function f(z) which lie in a given region R. 

A number of methods are currently available for the determination of the zeros 
of an analytic function f(z). The best known and certainly the simplest class of 
methods are iterative, as exemplified by the familiar Newton iteration: 

(1.1) Zn+1 = zn - f(zn)/f'(zn) 

Such methods work very well if the approximate location of the zeros is known in 
advance, and hence one- or two-step iterative methods are often used as the final 
stage in the calculation of the zeros, to refine approximations obtained by other 
means. However, it is a difficult task to attempt to obtain all the zeros of f(z) 
within a given finite region using only iterative methods. If the number of zeros is 
not known at the outset, the result may be unreliable in the sense that some of the 
zeros may not be discovered. On the other hand, if the region contains no zeros one 
may search long and fruitlessly for something which does not exist. Even if the 
number of zeros in the region is known, it may be difficult to coax the iterations 
into converging, or to stop them always converging to the same zero. Of course, 
this last difficulty can be obviated by successively removing the zeros as they are 
found, but while deflation is a convenient procedure for polynomials, and results 
in a simpler polynomial, for analytic functions in general the division cannot be 
carried out explicitly, and hence the resulting functional form becomes progres- 
sively more complicated. 

If the exact power series expansion of f(z) is available, methods based on the 
qd table are available (Rutishauser [8]). So far as the authors are aware these 
methods have not been developed to the extent of producing an automatic method 
for an automatic computer (Henrici and Watkins [1]). The existence of arbitrarily 
large terms in parts of the table, which give rise to cancellation errors which are not 
predictable, is an undesirable feature of an otherwise very powerful technique. How- 
ever, a more powerful practical objection to these methods is that in general the 
power series expansion may not be available without a prohibitive amount of work. 

If f(z) is a polynomial, there exists a large number of special methods to de- 
termine its roots. An extensive summary of the methods available in 1951 is given 
by Olver [7]. He discusses among others the Aitken-Bernoulli process and the 
Graeffe (root squaring) method with their use with a hand calculating machine in 
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mind. Each of the methods he describes will solve a low-degree polynomial (degree 
six or less) without difficulty; but for higher-degree polynomials each involves con- 
stant supervision to avoid pitfalls connected with possible ill conditioning and the 
building up of rounding errors or of cancellation errors. 

Since 1951 two alternative methods for polynomials have been developed. One, 
based on the qd algorithm, is mentioned above. The other, now known as Lehmer's 
method (Lehmer [3]) contains the following two features. First, there is a basic 
algorithm which determines whether or not there is a root of f(z), a polynomial of 
degree n, within a given circle. The algorithm involves constructing a Sturm se- 
quence of up to n elements, and noting the number of sign changes. Second, a search 
program constructs circles of successively smaller radius until a root is sufficiently 
well isolated. It is then divided out, and the process repeated until all n roots have 
been located. Although this method is designed for automatic computers, it is very 
susceptible to machine underflow or overflow. This difficulty is practically non- 
existent for polynomials of degree six or less, but gets rapidly worse with increasing 
degree n. It can be alleviated, but not removed, by performing multiple-precision 
arithmetic within the routine, including a complete machine word for the floating- 
point exponent. 

One possible (and commonly advocated) approach if f(z) is an analytic function 
is to replace it by a polynomial p(z) which approximates f(z) in the region under 
consideration. The polynomial p(z) may be an interpolating polynomial or simply 
a truncated power series. This procedure has the obvious advantage that many 
methods are available to find the zeros of the polynomial. Once these are found they 
may perhaps be used as starting values for an iterative process to find the corre- 
sponding zeros of f(z). The major disadvantage is that the zeros of f(z) may bear 
little or no relation to those of p(z). An extreme case is given by the choice 

(1.2) f(z) = e' 

and 

n 
(1.3) P(Z)= E Zs/j!. 

i=O 

Here f(z) has no zeros in any finite region of the complex plane while p(z) clearly 
has n zeros. An approach of this sort is described in Lehmer [2]. It is clear from 
the example given in that paper that it requires alert human supervision to care- 
fully avoid this kind of pitfall. 

The method we describe in the remainder of this paper is designed specifically 
to remove any need for human supervision, and to give a reliable result in the sense 
that all the zeros of the given analytic function within the given region are de- 
termined to a given accuracy. 

The method bears a strong family resemblance to Lehmer's method, in that it 
involves the reiteration of what Lehmer refers to as a Basic Question for a region, 
followed by a subdivision of the region. For Lehmer, the Basic Question is: Does a 
given region contain at least one root? and if the answer is yes, the region is covered 
by smaller subregions and the Question asked in each of these, the process being 
repeated until a root is sufficiently tightly bracketed. The procedure of this paper 
asks a somewhat stronger Basic Question: 
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How many zeros (of the analytic function) does the region contain? 
If the answer is greater than a preassigned number M, the region is subdivided 

suitably and the question is asked again. If there are as few as M zeros in the region, 
a polynomial is constructed having the same zeros within the region as f(z), and 
these zeros obtained by solving the polynomial. Hence the method isolates up to 
M zeros simultaneously rather than one as does Lehmer; and the Basic Question is 
asked very few times, since these M roots are localized by solving a polynomial 
rather than by successive subdivision. On the other hand, the construction of the 
polynomial is relatively expensive. 

Both the determination of the number of zeros and the construction of the 
polynomial depend on the explicit use of Cauchy's theorem; specifically, we pro- 
ceed as follows. 

If C is a closed curve in the complex plane which does not pass through a zero 
of f(z) and R is the interior of C, it is well known from the theory of complex vari- 
ables that 

(1.4) SN = 2JNf(Z) dz= z N 

where zi (i = 1, 2, * * *, v) are all the zeros of f(z) which lie in R. (A multiple zero 
is counted according to its multiplicity in this formula.) Thus in principle if we are 
considering a region R, and carry out the contour integral numerically for several 
values of N, we may determine approximations to so, si, S2, . The true value of 
so is an integer v, the number of zeros of f(z) in R. Using these approximations we 
may write down a polynomial p(z) of degree v whose zeros coincide with the zeros 
of f(z) in R. We should perhaps note that p(z) is in no sense required to be an ap- 
proximating polynomial to f(z); it merely shares zeros with f(z), and has the com- 
putational advantage that, provided v is sufficiently small, we may regard the cal- 
culation of its zeros as a standard procedure. Of course, f(z) may have many zeros 
in the given region R. In this case, the polynomial p(z) is of high degree, and may 
well (in fact, life being what it is, probably will) be very ill conditioned. We would 
have to determine the SN to high accuracy for the root of the resulting polynomial 
to adequately approximate those of f(z), and then maintain this accuracy in the so- 
lution of p(z). We avoid this difficulty as it arises by subdividing R into regions each 
of which contains only a few zeros. Thus the method falls into four sections: 

(1) Evaluate the number of roots so = v in the region. If this is few enough to 
handle conveniently, evaluate also s5, S2, **, s, and carry on to section (3). If not, 

(2) Subdivide the region into smaller subregions and do (1) on each in turn. 
(3) Given a suitable region and the evaluated si ... s^, construct and solve the 

equivalent polynomial p(z). 
(4) An optional section which takes the roots of p(z) as approximations to the 

zeros of f(z) and refines these using an iterative method on the original functionf(z). 
In the following paragraphs we describe these sections in some detail. We note 

that the speed with which the method operates depends critically upon the effi- 
ciency with which the contour integrals are evaluated. This depends on having 
adequate quadrature rules for the curve C. We have considered two kinds of region 
R, circles and squares. In the case of circles we have developed three methods 
(which we refer to as A, B and C) for determining SN (Eq. (1.4)). 
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2. The Basic Subroutine; Method A. 
The Organization. We refer to the subroutine which carries out the contour in- 

tegration as the basic subroutine. This routine is given: 
(i) a contour C; 
(ii) a function f(z) and f'(z) analytic on and within this contour; 
(iii) a list of the known zeros zi, Z2, . . , Zk of f(z) which have so far been obtained; 
(iv) constants M, K and e (see below). 

The routine attempts to calculate the number of zeros of f(z) within C using trap- 
ezoidal rule approximations to the contour integral 

( 21 f (z) 

Since the exact result so is known to be an integer, the accuracy required is low. 
We need only determine unambiguously which integer is involved. There are three 
possible outcomes. These are 

(a) It finds that f(z) becomes unduly small on the contour and takes this to 
imply that there is a zero of f(z) close to the contour. In this case the integration 
method, if continued, would converge slowly. The routine does not continue the 
integration, but returns control to the search routine, which in turn chooses a dif- 
ferent contour. 

(b) It finds a value of so. On checking the list of known zeros it finds that q of 
these lie within the region C, and hence there are so - q unknown zeros within C. 
If so - q > M it returns control to the search routine. 

(c) It proceeds as in (b) but finds a value so - q < M. It then evaluates the 
so - q unknown zeros as follows. It evaluates approximations to the sums of 
powers of zeros 

80 

(2.2) SN= ZzN, N=O,1,*,so-q, 

using trapezoidal rule approximations to the integral 

(2.3) SN = 2 f zI f(z) dz. 
2i f (z) 

The method of integration is described in more detail below. Since the locations of 
the known zeros Zl Z2 ... Zq are available, the sums SN of the powers of the un- 
known zeros are 

80 q 

(2.4) SNT= EZNZ =SN - E z . N =O, 1,* *,so-q. 
i=q+l 

Based on these numbers, a polynomial of degree so -q may be constructed, using 
Newton's formulas, which has zi (i = q + 1, * * * So) as zeros. This polynomial is 
solved using the polynomial root-finding subroutine. 

Local Deflation. We term the process of subtracting the already known zeros 
described by (2.4), local deflation. It performs much the same function as does de- 
flation for a polynomial; that is, it avoids finding any root twice. However, since 
deflation is carried out only over a given region, it does not suffer from the danger 
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of accumulation of round-off errors, as does polynomial deflation (Wilkinson [9]).** 
Local deflation is not an essential feature of the method described here; if it is 

not used, the only consequence is that additional regions may have to be searched. 
However, the total time taken depends on the number of regions searched rather 
than on the number of zeros. Thus the use of local deflation results in a consider- 
able saving of time. 

Programming Details. The integration is abandoned under heading (a) if there 
is a zero close to the contour, as manifested by the occurrence of a large value of 
f'(z)/f(z) . The value of this function is of order l/p, where p is the distance from 
the contour to the nearest zero. Thus if rlf'(z)/f(z)I exceeds some pre-set value K, 
indicating that p is less than rIK, the current integration is abandoned. Section 7 
of (Lyness and Delves) [5], which we refer to as Paper B, is devoted to a discussion 
of this point. 

It is necessary to give the integration routine some convergence criteria for the 
integrals SN. We have already noted that so need only be evaluated quite crudely. 
The routine we have written accepts a set of values si, S2, *, s, if each agrees with 
a previous iterate to within a pre-set constant e. 

The routine also requires a number M, the maximum number of zeros which it 
is allowed to handle. The choice of M involves a compromise. The effect of increas- 
ing M is that fewer regions need be scanned. However, if we choose M too large, 
the resulting equivalent polynomial may be ill conditioned. We would then have 
to evaluate si, s2, * * *, s, to too high an accuracy. We have generally chosen M = 5. 

Integration Method; Circles. We define C(zo, r) as the circle, center zo and radius 
r, in the complex plane. We translate the origin to the center of this circle and in- 
troduce the integration parameter t given by 

(2.5) z = zo + r exp (2irit). 

The zeros of f(z) are denoted by 

(2.6) Zj = zo + rj exp (27ritj), j = 1,2, ... , 

and we find 

(2.7) -N = j exp (2,ri(N + l)t) f(z + rex (2irit)) dt N = 0, 1, 2 . 
rN o f (zo + r exp (2irit) ) 

Since the integrand is a periodic function of t with period 1, an appropriate rule is 
the trapezoidal rule. This is discussed in Paper B. Denoting by 4N(t) the integrand 
in (2.7) and using standard functional notation, we define 

(2.8) ipN m 'ON1mJ = - E q?0-0 ) exp (2riNj/m). 

It follows that 

(2.9) R[2m,]1N = R 41 + 2m I'2j- l) 

** We note that deflation as carried out in Lehmer's method is stable. 
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Thus the integral in each of the (v + 1) calculations depends on the same set of 
function evaluations of f'(z)/f(z) and, as is usual in trapezoidal rule calculations, in- 
creasing the number of points for function evaluation from m to 2m requires only m 
additional function evaluations. 

We describe the error analysis of this process in Paper B. There it is shown that 
asymptotically 

(2.10) IR[^ l]+- Icp1 ( 0 (Am) 

where IA I < 1. More precisely 

(2.11) IAI = max (A1, A2, A3) 

where 

A1 = max rj/r, A2 = max r/rj, A3 = r/R 
rj<r rj>r 

and R is the distance from zo of the nearest point at which f(z) is not analytic. The 
convergence of the sum to the integral is linear in the usual sense; that is, each addi- 
tional function evaluation reduces the error by a constant factor. 

Integration Method; Squares. We define s(zO, r) as the square whose vertices are 
zo + (?41 i i)r. We use an m-point trapezoidal rule on each side separately, and 
eliminate early terms of the asymptotic expansion of the discretization error, fol- 
lowing the method of Romberg. It is shown in Paper B that 

(2.12) R(m)f - If - C2/m2 + C6/m6 + cio/m'0 + *** 

where If stands for the true contour integral and R(m)f for the discretization using 
the m-point trapezoidal rule for each side. Using m = 1, 2, 4, 8, * , 2P, it is shown 
that after using 2P+2 points the error E is bounded by 

(2.13) (El < r (4p + 2)!4P2 K 
(2irp)2p+2 

where 2rp is the shortest distance between any zero of f(z) and a side of the square 
and K is a constant. Asymptotically, in terms of the number of points n, the 
discretization error is shown in Paper B to be dominated by a term 1/n2l092n as 
n oo. This is a slower rate of convergence than for the circle. 

3. The Search Routine. The search routine is that part of the program which 
splits a given region R containing too many zeros, into smaller regions R1, * , R j. 
We have investigated only very simple schemes in which R1, R2, * , Rj have the 
same shape as R. The method of subdivision we have used is as follows: 

(a) Squares. The square is divided into four as shown in Fig. 1 (a). 
(b) Circles. We have adopted Lehmer's subdivision; that is, we cover the circle 

of radius R with nine smaller circles, namely 
(1) a concentric circle of radius R/2, 
(2) eight circles of radius 5R/12 regularly spaced around the remaining annulus. 
This scheme is shown in Fig. 1 (b). 
The subregions are then treated in turn in the order indicated by the subroutine. 

This order is broken if at any stage the number of zeros in R remaining to be lo- 
cated becomes less than or equal to M. In this case the region R is searched again. 



LOCATING THE ZEROS OF AN ANALYTIC FUNCTION 549 

4 

21 

6 1 2 

3 4 79 

8 

(a) (b) 

FIGURE 1. The method used to subdivide squares and circles. In each case the original region 
is represented by the heavy line. Square regions have the advantage that they can be subdivided 
without redundancy. On the other hand, more efficient integration rules can be obtained for 
circles. The numbers in the subregions denote the order in which they are treated. This order may 
be altered if it is apparent that all the roots have been found, or that those remaining can be 
found by a faster alternative procedure (see text). 

If the basic subroutine indicates that a region Rj is unsuitable (because a zero 
lies close to the boundary) the region is extended. 

For the circle this extension is simple; the radius of the current circle is in- 
creased. The procedure for squares is more complicated, since these possess com- 
mon sides and the program looks ahead to avoid future trouble. A number of dif- 
ferent cases arise which are clumsy to describe but easy to implement; a typical 
case is shown in Fig. 2, which portrays the rescue operation when trouble is struck 
(for the first time) on (an (inside) edge of) the second subregion of a given square. 

TROUBLE 

FIGURE 2. An example of the algorithm used for avoiding roots near the edge of the square 
subregions. In this example, square 1 was successfully treated, and the trouble encountered on an 
inner edge of square 2. The program readjusted squares 2, 3, and 4 as shown. As a result a small 
area is covered more than once. 
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An Example. The working of the search routine is illustrated by a practical ex- 
ample taken from Lehmer [2]. We choose 

f(z) = J12(Z) - Jo(z)J2(z). 

This is a real analytic function of z containing a double zero at the origin and four 
other complex zeros of the form ial A4 ixa2 inside a square of side 2R = 12, center 
the origin. Fig. 3 illustrates how the program located these zeros when it was 
allowed to deal with groups of up to three zeros at a time. 

x x x x 3 

x x x x 

6 ZEROS TROUBLE SHIFT EVALUATE ZEROS 

Solution of the Equation J12(Z) -Jo(Z) J2(Z) =O. 

FIGURE 3. Steps in the location of the zeros of the function J12 - JoJ2. The original region 
is a square of side 2R = 12, centered at the origin. The position of the zeros is marked with a 
cross. That at the origin is a double zero. 

After obtaining the equivalent polynomials p(z) the routine calculated the zeros 
of these to be 

= = 4.466298, a2 = 1.46747037 

which agree with the zeros of f(z) to the number of significant figures shown. In 
this example the convergence parameter E for the integrals was set at 10-4. 

The Buffer Zone. The user initially specifies some region which he wishes to be 
searched for zeros; if this region is square it is most likely that the search will be 
limited to this region. Exceptions will occur if there is a zero close to the boundary 
of the square, when the region may be extended to avoid a difficult integration. 

If the region is a circle of radius R, it is not true that the specified circle will be 
the only region searched. Fig. 1 shows that the process of subdividing the circle will 
cause a search over a region outside the required circle. The extent of this 'Buffer 
Zone' depends on the number of subdivisions made; that is, on the number of zeros 
in the region and its extension. If there are a large number of zeros, the region 
actually searched may include points up to a distance 235R/172 -lOR/7 from 
the center of the required circle. This feature of the search routine must be kept 
in mind. For the methods described here to be valid, the function must be analytic 
over the entire region searched, which may exceed the original region. 

4. Comparison with Lehmer's Method. The algorithm presented in this paper 
may be applied to an arbitrary analytic function. However, an inevitable question 
is: if it is given a polynomial, how does it compare with existing methods? In par- 
ticular, a comparison with Lehmer's method is of interest. We first look at the 
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relative speed of the methods. Since our algorithm spends most of its time evaluat- 
ing f(z) for the numerical integration, its speed is determined by the number of 
evaluations needed to attain a given accuracy e in these integrations. We saw in 
Section 2 that the dependence of e on the number of function evaluations n has the 
form 

(4.1) c '- oAn IAI < 1 . 
That is, the process converges linearly in the number n. 

This is the same order of convergence as obtained in Lehmer's method, which 
converges linearly in the number of major steps. However, for a polynomial of de- 
gree v, each major step in Lehmer's method involves the tabulation of a Sturm 
sequence of 0(v) steps, taking of order v2 operations in all. A single function evalua- 
tion takes only of order v operations, and hence the time taken by the method of 
this paper increases less rapidly with the degree of the polynomial than does 
Lehmer's method, although for polynomials of low degree it is considerably slower. 
Such low-degree examples are, of course, rather unkind to the method, since if it is 
allowed to treat all the zeros at once, it will spend its time re-constituting the orig- 
inal polynomial coefficients and then hand these on to a polynomial-solving routine! 

On the other hand, it may often be convenient to use the routine for poly- 
nomials of high degree (Z12). Two difficulties can arise with polynomials of high 
degree. The first difficulty lies in the polynomial itself, which may be very ill con- 
ditioned with respect to its coefficients. These must then be carried to multiple pre- 
cision in order to define the roots adequately, independently of the method of solv- 
ing the polynomial. The second difficulty is the possible occurrence, in a given 
method of solution, of extremely large or extremely small numbers which may 
underflow or overflow the machine word. This difficulty exists in Lehmer's method; 
for any given choice of precision in the routine, it is possible to construct poly- 
nomials for which this will occur. The routine then fails completely to give a solu- 
tion. This difficulty does not occur with the method given here, for which all num- 
bers generated are automatically of a reasonable size. 

We illustrate these two different points with the following example of a badly 
ill-conditioned polynomial of degree 16, taken from Wilkinson [9] and Olver [7]. 

f(z) = 12501 62561 x16 + 3854 55882 x15 + 8459 47696 x14 + 2407 75148 x13 
+ 2479 26664 x'2 + 642 49356 xll + 410 18752 xl0 + 94 90840 x9 

(4.2) + 4178260x8 + 837860x7 + 267232X6 + 44184x5 
+ 10416x4 + 1288x3 + 224X2 + 16x + 2 

Table 1 shows the result when this polynomial is solved to varying degrees of pre- 
cision, using the method of this paper, but with no final iteration. The results agree 
with those given by Wilkinson, to the precision stated by him. We see that, indeed 
it is necessary to define the polynomial to double precision (about 24 decimal places 
on our machine) before the more closely spaced roots become stabilized. However, 
an accuracy of about 9 significant figures is obtained using only single-precision 
working in the routine itself. We gave the polynomial also to a single-precision 
version of Lehmer's method, which was available. This routine failed to solve the 
equation, due to the overflow difficulty mentioned above, although we used it as 
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TABLE 1 

Col. (1) double precision result (2) (3) (4) 

1 -.13244 72469 90246 20179 ? .13600 55079 51377 63786i 9 + i9 10 + ill 10 + i9 

2 -.01869 49953 44576 20767 ? .25034 56818 77088 4804 i 5 + i7 11 + ill 10 + ill 

3 -.00032 09446 10861 38 ? .29258 37451 03366 82 i 5 + i4 11 + ill 11 + ill 

4 -.00049 14535 99303 83 ? .30418 23930 25528 14 i 0 + iO 7 + i7 7 + i7 

5 -.00014 26410 89728 97 ? .30861 21242 15863 54 i - 10 + ill 10 + ilO 

6 -.00004 71311 10293 77 ? .31066 18478 80804 22 i 10 + ilO 10 + ilO 

7 -.00001 48384 57209 34 ? .31169 63046 87558 09 i 12 + ill 12 + ill 

8 -.00000305298352332 ? .31219 69683 754 i - 10 + i9 10 + i9 

TABLE 1. The zeros of the polynomial (4.2). Column (1) gives the zeros as obtained by a 
complete double-precision program based on the method of this paper. Columns (2), (3), and (4) 
refer to evaluations with a single-precision program, but with the function evaluation carried out 
in alternative ways. The number of decimal places obtained accurately is shown. 

Column (2) single-precision evaluation of the polynomial. 
Column (3) double-precision evaluation of the polynomial. 
Column (4) single-precision evaluation of the equivalent analytic function (4.3). 

TABLE 2 

Calculated zero 
0 Lower bound Calculated zero of derivative 

7r/12 18.26 19.14864645 16 23.896196 64 
7r/6 8.92 9.37328298 32 11.73753767 128 
7r/4 5.82 6.13876304 16 7.7039936 128 
7r/3 4.29 4.54215142 32 5.7039986 128 

57r/12 3.48 3.60417681 32 4.5203892 128 
7r/2 2.81 2.99999999965 32 3.7488827 256 

TABLE 2. The smallest zeros of the function PV-2(COS 0) and of (d/dv)Pv-2 (cos 0) for various 
values of 0. Column 2 gives the lower bound obtained by Low [4]. Column (3) gives the zeros 
evaluated using the routine described here, while Column (5) gives the smallest zero of the first 
derivative using the method described in Section 7. Columns (4) and (6) give the number of func- 
tion evaluations used by the program in each case. 

the final polynomial-solving routine in our program (for which it had to handle 
polynomials of degree 5 or less) with every success. 

Column (4) of the table is of special interest. The polynomial (4.2) was orig- 
inally formed from the analytic function f(z) given by Olver [7]. 

f(z) = 2XP(z) + 2Q(z), 
P(z) = z(dz2 + 1)n-1 sinh n'y cosech 'y, 

(4.3) Q(z) = (dz2 + 1)n cosh n'y, 
cosh y = (dZ2 + 1)-1 {(d + 1/2)z2 + 1} 

with parameters n = 8, d = 10, X = 1.0. 
Moreover, it is quite well conditioned with respect to these parameters, although 

the polynomial form is badly conditioned. Column (4) shows that we obtain the 
same accuracy in the zeros by evaluating (4.3) single precision, as by evaluating 
the polynomial double precision. This is to be expected from the condition numbers, 
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which for the higher numbered roots are of order unity for (4.3) but 107 for (4.2). 
The ability to accept the more natural form (4.3) rather than the derived poly- 
nomial is a useful feature of our method; one is given the choice of presenting a 
function in the way which makes the zeros the least sensitive to the parameters. 

We have demonstrated this ability in an even more striking, although rather 
artificial example. The polynomial of degree 20 having as zeros the integers from 
1 to 20, has condition number of order 1010 for the larger roots (Wilkinson [9]) and 
hence is not represented at all even by a double-precision calculation. The (of course 
trivial) representation of this polynomial in terms of its linear factors was given to 
the single-precision program, which satisfactorily computed all 20 zeros to at least 
nine significant figures. 

5. The Basic Subroutine; Method B. The algorithm given in the previous sec- 
tion requires the evaluation of the single function f'(z)/f(z) at a number of points, 
to produce the zeros of f(z). In practice, of course, this will usually involve the 
separate evaluation of f'(z) and f(z); and it may happen that the calculation of 
f'(z) is unduly difficult or takes very much longer than that of f(z). In these circum- 
stances it would be convenient to have an algorithm which required only function 
evaluation of f(z). We have developed two such methods. The first is derived from 
Eq. (5. 1) by integrating by parts, and involves the evaluation only of ln f(z); it is 
described in this section. An alternative method, involving a numerical approxima- 
tion to f'(z), is described in a subsequent section. 

We start from Eq. (2.3), which we restate here 

(5.1) SN E * 2n Zc ) dz. 

Since 

(5.2) fzI) = lnf(z), argf(z) -7r, f (z) dz 

we see that we can replace the factor f'(z)/f(z) by the derivative of ln f(z) and 
then integrate by parts. The initial difficulty in doing this is that ln z is not analytic 
within the circle Cr: IzI = r, but has a branch point at the origin. We therefore 
have to be able to keep track of the appropriate sheet on which ln f(z) lies as z 
passes round the contour C. The possible points of discontinuity in ln (z) occur 
where arg z = - r and the main effort in the following analysis goes into ways of 
numerically keeping track of these points. We define the principal value of ln (z) 
as: 

ln (r exp (2rit)) = ln r + 2rit, 2 - 2 

and in numerical calculations we assume that the subroutine for evaluating the log- 
arithm of a complex number calculates this quantity. In what follows, the function 
In (z) refers to this principal value. 

We assume that no zero of f(z) lies on the circle Izi = r. If we define a new w 
complex plane, the mapping w = f(z) maps the circle Iz = r into a closed curve C 
in the w plane. This curve does not pass through the origin. We suppose C cuts the 
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negative real axis at ,.t distinct points ql, q2, * *, q,. We assign to each point an 
index aj which takes the value + 1 or -1 according as C cuts the axis in a positive 
(counter clockwise) or in a negative direction. Thus, if the points pj in the z plane 
correspond to qj in the w plane 

(5.5) qj = f(pj), arg qj = -7r, 

and for all 0 < ej ? hj, argf(pj exp (iej)) $-X 

(5.6) =j= -sgn (Imf(pj exp (ihj))) 

In order to carry out the integration we divide the contour integral C into sec- 
tions PlP2, P2P3, ***. Within each of these sections arg f(z) 5 -7r and so In f(z) is 
continuous. Thus 

2r7r?, r f(z) dz=1 jE i . ff(z))d 

(5.7) = E JlizNlnf(z) :pi$?- a1; f NzN1 lnf(z)dz, N> 1 

where the sign on pj indicates that the appropriate limit is used. The first term on 
the right-hand side may be written 

j=1 
In the case in which N = 0 we find 

(5.8) = 2ri | f(Z) d = j 

This corresponds to the well-known result that the number of zeros in Cr is the 
number of times C encircles the origin. 

For N > 0, the expression 

(5.9) SN =Z j(pj)N NZN lnf(z)dz 
3=1 ~ 27ri rC 

is clearly quite unsuitable as a basis for discretization. The locations of pj would 
need to be determined and the integral of a function with several discontinuities 
would have to be evaluated. To obviate this difficulty we obtain an expression for 
E ,jpjN in the form of an integral whose discontinuities exactly eliminate those in 
the second term. We set 

(5.10) pj = r exp (27riTj) 

and we define a function [t] by 

(5.11) It]=t, -2<t 2, 

[t + 11 = [t]. 

An elementary calculation shows that 

(5.12) (Pj)N = 27riN L (r exp (27rit))N[t -Tj - ldt. 
Thus we find from (5.9) that 

Thus we find from (5.9) that 
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(5.13) SN = f N(r exp (27rit)) c(t)dt 

where 

(5.14) +(t) = 7j27ri[t - Tj- -lnf(r exp (27rit)). 

We note that 0(t) is a continuous function of t with period 1. Hence if the values 
of Tj were known exactly, the integral would be a priori quite as straightforward 
as the original (2.7), the principal difference in the amount of work being that 
ln [f(z)] is calculated instead of f'(z). We show below that it is not necessary to 
know Tj exactly to obtain accurate numerical results. The information that Tj is 
chosen so that +(t) is continuous is sufficient. 

Discretization. The discretization may be accomplished using an n-point trape- 
zoidal rule 

(5 15) Rnt]0 (t) = 1 ( 

We first define what we term a "sufficiently fine discretization." We require the com- 
puter to determine the number of times the curve C: w = f(z), lzl = r cuts the 
negative real w axis, and it has at its disposal only a finite number of points on this 
curve. Thus if the curve behaves in an unexpected manner between two successive 
points, the routine may fail to indicate this. We define a sufficiently fine discretiza- 
tion as follows: 

(i) The curve cuts the negative real axis only once or not at all between any 
pair of neighboring points. 

(ii) The straight line segment connecting these points cuts the negative real 
axis the same number of times as the corresponding section of the curve. 

The analytic results obtained below all depend on the discretization being suf- 
ficiently fine. 

We suppose that arg z is defined so that 

(5.16) -7r < arg z _ 7. 

For a particular discretization we have available the values of f(r exp (27ritj)) where 
tj= j/n and j = 1, 2, ... , n. We may assign to each point a value of a defined as 
follows: 

aj = +1, argfj - argfjl < -'r, 

(5.17) aj = 0, -7r < argfj - argf11l < 7r, 

,}j = -1, 7 <argfj-argf_l. 

This has the effect that, if Tj lies between tk and tk+l, ak+i is set equal to uj. In 
this respect the discretization transfers properties pertaining to points at which C 
cuts the negative real axis to the next calculated point on the curve. We now con- 
sider the trapezoidal sum 

R I, t [t- Tj-2] exp (27riNt), 

where 
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(5.18) tk < Tj < tk+j 

and 

n>NO> . 

We find 
k 

R In, 1 -([tTj l exp (27riNt)) = (t, - Tj + 2) exp (2iriNtI) 
(5.19) 1 

n-1 
n=o 

+ - E (t - Tj-2 ) exp (27riNt1) n l=k+1l2 

where 

(5.20) t= i/n. 

Since 

n-1 

(5.21) E ,exp (27riNt)= 0, n > N, n 1=o 
it follows that the terms in Tj in expression (5.19) eliminate each other. The value 
of R[n1"[t - Tj- 2] exp (27riNt) does not depend on the exact value of Tj, but 
only depends on k, that is on the interval in which Tj is situated. A simple calcula- 
tion gives 

(5.22) R In 'l [t - ] exp (27riNt) = exp (27riNtk+1) 2 ~~~n (exp (27riN/n) - 1)' 

where Tj lies in the interval tk < Tj < tk+j and n > N. 
The calculation of SN may be arranged as follows: 

(5.23) SN _NR'n,1 (4(t) exp (27riNt)rN) = TNV(n) -LN(n) 

where 

(5.24) LN(n) = NR[n,l]((r exp (27rit))N ln f(r exp (27rit))) 

and 

(5.25) T(n) = N , 27riRn"l],aj[t - Tj- (r exp (27rit) )N. 

The advantage of doing this is that TN (n) need not be calculated as a trapezoidal 
sum. We note that in the discretization a nonzero value of 6j is assigned to the next 
calculated point; moreover, replacing Tj by the next calculated point does not alter 
the value of the trapezoidal sum. Consequently 

n 

(5.26) TN = N 1 27riuJk exp (27riNtk)/n(exp (27riN/n) - 1). 
k51 

This relatively simple analytic expression for TN (n) is clearly much more convenient 
than (5.25). 

Programming Details. The final results (5.24) and (5.26) give an alternative way 
of evaluating the power sums SN, and a routine based on these equations can re- 
place the basic subroutine described in Section 2. The user need not then evaluate 
f'(z) at all. In order to evaluate the o-i it is necessary to tabulate and store the argu- 
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ment Oi of the function evaluations fj(z) = (rj, Qj). Further, to allow for the possi- 
bility that during the evaluation of the SN, the apparent number of zeros (and 
hence the required number of powers SN) changes, it is necessary to store also the 
a- and rj. This possibility arises because in order to obtain the correct number of 
zeros it is necessary for the routine to be able to recognize a "sufficiently fine dis- 
cretization." Unless some care is taken, it is possible to be misled, since the appar- 
ent number of zeros in the region as obtained from (5.8) is always an integer; then, 
convergence to the correct integer is not smooth as the number of points used in- 
creases. This contrasts with the situation described by (2.1) for Method A, where 
the apparent number of zeros approximates an integer, and in general converges 
smoothly towards an integer. There are two simple ways of avoiding this difficulty. 

(a) We calculate Si and observe its behavior. 
(b) We accept three consecutive equal evaluations of the number of zeros. 
We have used method (b) successfully as giving a sufficiently good indication of 

the number of unknown zeros. If this is less than M (see Section 2) the coefficients 
SN are evaluated; if during this evaluation the apparent number of zeros changes, 
the evaluations are adjusted accordingly. 

6. The Basic Subroutine; Method C. We describe in this section an alternative 
method which also avoids the necessity for the user to calculate f'(z). This method 
is identical with that given in Section 2, except that f'(z) is replaced by an approxi- 
mation derived only from function evaluations of f(z). The function evaluations 
used for this are the same as those required to approximate the contour integrals, 
and hence the method is comparatively economical of points. Moreover, it has the 
advantage that it can be very simply extended to locate the zeros of any given 
derivative f(P) (z) of f(z), again using only function evaluations of f(z). This exten- 
sion is described briefly in Section 7. 

The numerical approximation of derivatives of analytic functions when function 
evaluations in the complex plane are available, is described in Paper B, Section 2. 
The sth Taylor coefficient a8 of f(z) expanded about the point zo, is given by 

(6.1) a _f() (Zo) f 1 f f(z) (6.1) a. = 
~ ~~27r C(z- zo) 8+i 

d 

where the closed contour C surrounds the point zo. In (Lyness and Moler) [6] it was 
shown that methods of evaluating a8 based on Eq. (6.1) converge very rapidly, and 
are free from the round-off errors normally associated with numerical differentia- 
tion. We proceed as follows. The evaluation of the contour integrals (2.2) in Section 
2 requires f'(z) at N regularly spaced points round the circle in question, which we 
may take to be centered at the origin. We approximate f'(z) by a truncated Taylor 
series f'(z) 

N-1 

(6.2) '(z) =z 
i-=O 

We obtain the approximation d/(N) to the Taylor coefficients aj using the N-point 
trapezoidal rule to evaluate the integrals in (6.1). In this way we need function 
evaluations only at a single set of points. Defining these function values by 

(6.3) fljN = f (rWN ) N; U = exp (27ri/N), 
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the required formulas are 

N 

(6.4) r 8a (N) 1 E WNfN 

and 
N-1 

i(N) 
s~- (N) j(8-1) (6.5) rf = E sr8a, fCLN 

8=0 

The trapezoidal rule (6.4) used for approximating a8 corresponds to the first term 
in the expansions given in Lyness and Moler. The truncation error of the ap- 
proximation (6.5) forf' is considered in Paper B. This error stems from two sources 
-the truncation of the Taylor series at the Nth term, and the approximation used 
for the coefficients a, which are retained. In Paper B it is shown that the total 
truncation error using N points has the form 

(6.6) Irf'(z) _ rfj(z)((N)I < EN; Izi < r, 

where 

(6.7) EN-constNpNas INI --> o; O < pI < 1. 

A more detailed bound is given in Paper B, Eq. (2.6). Eq. (6.7) shows that the 
accuracy of the approximation to the derivatives at each point has the same ex- 
ponential dependence on N, as the truncation error involved in performing the final 
contour integrations using Eq. (2.6). 

As in (2.7), the work may be arranged so that in proceeding from N to 2N points 
we need only perform operations with the added points. We define coefficients bj(N) 
involving only these added points: 

N 
(6.8) rbj(N) = a 2N 1)f(2k-1)/2N, j = 1 * N. 

Then in terms of these coefficients we have 
8 - (2N) 1(8,(V 8,M 

(6.9) r a8 N) = 2(r8&8(N) + rsb (N)) 0 ... N - 1, 
8?N (2N) - N N r 8+?N = 2 (r8 (N)8 _ r8b")) 

and 

N-1 

rft2N = rf t + N E r8+Na (2N) t(8-1) t even, 
(6.10) N-1 

8=0 
N-1 

N N-ti N- 8Ni 2) (81 
- ,I sr 8b8 N2 ) - N E r8N.(2 ) t(8-) t odd. 

8=0 8=0 

An Example. Both this method and that of the previous section are particularly 
easy to use, since the user has only to provide a routine for evaluating f(z). We 
demonstrate their power by means of a simple example which was the subject of a 
recent paper (Low [4]). This was concerned with the evaluation of the smallest 
zeros of the associated Legendre function PV-m (cos 0) for fixed m and 0, as a func- 
tion of v. These zeros are known to be all simple and real, and Low obtained bounds 
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on the smallest zeros for m = 2 and a number of values of 0. A program based on 
the method of this paragraph was used to search for the smallest zeros, and gave 
the results in Table 2. 

7. The Zeros of f(P)(z). Method C may be adapted in an obvious manner to ob- 
tain the zeros of the pth derivative f(P) (z) of a given analytic function f(z). The cal- 
culation of the Taylor coefficients aj(N) takes place as before, but f'(z)/f(z) is re- 
placed whenever it occurs by the approximation to f(P+l) (z)/f(P) (z) based on these 
Taylor coefficients, using 

N-1 

(7.1) f(p (z) (J) (z) = E i(i - 1) ... (j - p + l)jz(N)ziP. 
jcO 

The truncation error involved in Eq. (7.1) is considered in Paper B. There it is 
sChown that using N function evaluations 

(7.2) rpi f(p) (z) - f(p) (z) I < EN ); Izl < r, 

where 

(7.3) ELN' constNPp, N- o; 0< pI <1. 
An Example. As an example of the use of this technique, we consider a problem 

due to W. L. Morris (private communication). The following function arises in the 
consideration of algorithms for solving sets of ordinary differential equations: 

) 1 - 1.005e-' + 0.525C2z - 0.475e-3z - 0.045&"4z 
2.27e-z - 2.19e,2z + 1.86e-3z - 0.38e-4z 

for which the characteristic of interest is the location of the zero of smallest modulus 
of f'(z). A program based on the method described here was used to search for this 
smallest zero, and located it to be 

(7.5) zo = 0.3430042 + il.0339458. 

This example is interesting since the function (7.4) has a pole at zp: 

zp =-0.2275004 i il.1152220 

with modulus only slightly greater than that of zo. This serves to emphasize the re- 
marks made in Section 3. The methods given in this paper require a knowledge that 
the function f(z) is analytic in the region searched. 

8. The Final Iteration. A feature of almost any global method for locating zeros 
is that it is uneconomic to find the zeros to high accuracy. Rather, these should be 
located to a relatively low accuracy first and then refined by an iterative technique. 
This is also true of the method given here, since it is time consuming to evaluate 
the contour integrals to high accuracy. We have therefore allowed for a final iterative 
stage in all of the methods. 

For Method B we have used the secant rule, while for methods A and C we have 
used Newton iteration, with the required derivative in Method C being obtained 
from the Taylor expansion (6.2). For all of these methods the final accuracy at- 
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tained depends only on the accuracy with which the function can be evaluated near 
the zero. We have also used Newton's method to iterate the pth derivative, obtain- 
ing both f(P)(z) and f(P+l)(z) from the Taylor expansion. In this case, the attainable 
accuracy depends on the accuracy of the truncated Taylor series. 

9. Discussion of the Methods. The methods given in this paper give a practical 
means of finding the zeros of an analytic function or of its derivatives, in a given 
region. Each method has its own advantages and disadvantages, and it does not 
seem possible to single out one as being always preferable. However, we attempt 
here to make some comments on their relative virtues. 

These methods give the user the choice of searching in squares or in circles. The 
search routine for squares is rather more efficient than for circles, yielding much less 
overlap (usually, none) when a subdivision occurs. But the integration rules given 
are more efficient for circles than for squares. For circles, we have presented three 
methods: 

Method A. Explicit evaluation of f'(z). 
Method B. Evaluation of In (f(z)). 
Method C. Evaluation of f'(z) by interpolation. 

Of these three methods, A is by far the most economical of storage space and is 
about as fast as Method B. If no derivatives are available, then in general Method 
B is faster than Method C, since for large numbers of points the evaluation of the 
Taylor coefficients and then the derivatives in Method C is time consuming. How- 
ever, Method C has the advantage that it is readily adapted to find the zeros of 
the derivatives or the zeros of several derivatives at the same time. 
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